
Sketchy View on Classical Density Functional Theory (cDFT) 

 

Introductory Points 

 

Classical Density Functional Theory (cDFT) is based on the idea that the free energy of an 

inhomogeneous fluid is a functional of the average one-body density.  Minimizing the functional 

determines the equilibrium density profile and free energy while further derivatives provide 

correlation functions. The prime motivation behind classical density functional theory 

development is that methods of functional differentiation yield formally exact results more 

readily and elegantly than methods focusing on the partition function. 

Molecular Dynamics simulations and Monte Carlo calculations with simplified Hamiltonians, 

often composed of additive pair potentials, are the most popular techniques used to compute 

properties of inhomogeneous liquids. However these can be quite expensive due to the long 

equilibration times and extensive phase-space sampling necessary to compute thermodynamic 

averages. 

In contrary theories in terms of the equilibrium densities rather than individual configurations of 

molecules avoid this phase–space sampling and hence are much more efficient for the 

computation of equilibrium properties. Classical DFT focuses on the direct connection between 

free energy and molecular structure (density profiles) rather than on the overwhelming data 

generated by the trajectories of all constituent particles in molecular simulation. A microscopic 

state of a many-body system entails 6N degrees of freedom (where N is the number of defined 

particles in the system), whereas the density of a spherical object is a simple function that 

depends solely on the three-dimensional vector r. Therefore use of classical density functional 



theory provides deeper insights into the underlying physics of natural phenomena and which is 

more important, reduces the computational demands. 

Therefore density functional theory emerges as a powerful computational tool for study of the 

structure and thermodynamic properties of both bulk and inhomogeneous fluids. On the one 

hand, DFT is able to describe the microscopic structure and meso / macroscopic properties on the 

basis of intermolecular forces; and on the other hand, it connects seamlessly with conventional 

phenomenological equations for modeling macroscopic phenomena. The cDFT-based methods 

are generic yet versatile they are naturally applicable to systems with multiple length scales that 

may fail alternative computational methods. A full presentation requires review of the basic 

concepts of DFT for classical systems, the mathematical relations linking the microstructure and 

correlation functions to measurable thermodynamic quantities, and connections of DFT to 

conventional liquid-state theories.  The term density functional theory has two interrelated 

versions in circulation:  

1. The quantum approach developed by Hohenberg and Kohn / Kohn and Sham. 

2. The classical approach first applied by Ebner, Saam, and Stroud on the basis of Mermin’s 

pivot paper and advocated vigorously by Evans. 

 

A brief account of the history elicits their causal relationship: 

 

Density Functional Theory Chronology. 

1964: Hohenberg and Kohn (HK) variational principle for the inhomogeneous electron gas 

at T = 0 

(P. Hohenberg and W. Kohn, Inhomogeneous Electron 

Gas, Phys. Rev. 136, B 864 (1964)) 

 



The mathematical foundation of DFT (in quantum mechanical context), was first established by 

Hohenberg and Kohn in a seminal article published in 1964 concerning the ground-state 

properties of an electron gas. There Kohn and Hohenberg derived the celebrated variational 

principle for the ground state energy. 

In summary: 

 

1. Electron density n(r) in the ground state as basic variable. 

2. Electron density n(r) determines uniquely the external potential Vext. 

3. Existence of an unique energy / density  functional Ev[n] with the following properties 

Ev[n0] = E0 and Ev[n] > E0. 

 

1965: Mermin formulates Hohenberg and Kohn (HK) variational principle for T > 0 

(N. D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Phys. Rev. 137, A 1441 

(1965)) 

 

Hohenberg–Kohn theorem was established originally in the quantum mechanics of the ground-

state energy of electrons at 0 K. Its generalization to electrons at a finite temperature was given 

by Mermin. Indeed, from a mathematical perspective, classical DFT closely resembles electronic 

DFT (unfortunately both have the same acronym) except that in the former case, the density 

functional applies to the structure of atoms or e.g coarse-grained elements of a polymeric 

molecule, whereas the latter applies to electrons. 

 

 



1965: Kohn and Sham equations 

 (Kohn and Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. 

Rev. 140, A 1133 (1965)). 

In the second paper, Kohn and Sham postulated that a system of many electrons can be 

equivalently represented by a noninteracting reference system where each electron moves 

independently in an effective potential that consists of the attractive energy due to the nuclei, the 

direct Coulomb repulsion among electrons, and a self-consistent local potential arising from the 

exchange and correlation effects. The effective one-electron ansatz provides a starting point for 

modern applications of DFT to quantum many-body problems. Today there are numerous 

versions of DFT, ranging from simplistic local density approximations (LDA) to more 

sophisticated versions. Different versions of DFT differ mostly in the exchange-correlation 

potential. Fueled with a pragmatic computational scheme proposed by Kohn and Sham electronic 

DFT has evolved into a powerful approach in computational chemistry. 

 

Around 1976: application of DFT to classical systems 

After a further decade it was realized that the density functional variational methods were readily 

applicable to classical fluids where they could also generate useful approximation schemes. The 

connection of the variational method in statistical mechanics with DFT in quantum chemistry 

was first recognized by Ebner, Saam and Stroud. Bob Evans summarized early developments of 

DFT for classical systems and applications to inhomogeneous fluids. While early developments 

of DFT for classical systems were primarily focused on simple fluids, much progress has been 

made in recent years towards more accurate formulation of the Helmholtz energy functionals 



applicable to complex fluids, including those containing block copolymers, polyelectrolytes, and 

biomacromolecules. 

 

1998: Nobel Prize in Chemistry for W. Kohn for his development of the Density 

Functional Theory 

 

So, finally, we have the powerful tool of classical density functional theory with a strong 

statistical mechanics foundation, with the underlying motive to express the free energy of an 

inhomogeneous system in terms of its density field functional. Once this functional is obtained, it 

can be used to calculate the structure and thermodynamic functions. We embark on our cDFT 

journey with description of the basic structure of the theory, followed by approximations for the 

free energy functional and recent developments important for our future work for both atomic 

and polyatomic systems. 

 

Theoretical Basis 

The main task in DFT is to construct the Grand potential / Helmholtz free energy functional of 

density. For a (model) fluid with given effective potential one can devise approximations for the 

Helmholtz functional F [ρ] that should be applicable to all inhomogeneities. Thus the key idea 

boils down to the fact that the Helmholtz functional is a unique functional of density and its form 

does not depend on the external potential V(r). Density functional theory is naturally formulated 

in the grand canonical ensemble. Being in the grand canonical ensemble we think in the 

following order so as to connect thermodynamic properties to the one-body density. 

 

 



1. Statistical mechanics in the grand canonical ensemble 

 
Define Hamiltonian. Use Hamiltonian to calculate grand canonical partition sum. The grand 

canonical partition sum contains all the information of the system in equilibrium. From the grand 

canonical partition sum we can (in principle) calculate everything. If it would be possible to 

calculate exactly, we would not require the formalism of classical DFT. However, in general it is 

not possible to calculate it easily, especially for arbitrary external fields. It turns out that it is 

simpler to make useful approximations within the framework of density functional theory than in 

the evaluation of the partition sum. With the help of the partition sum we can define the 

equilibrium probability density. Then - average equilibrium density distribution. 

 

2. Functional definition for the “grand potential” 

 
The grand potential is a functional of the molecular density - straightforward to prove but first  

 

consider that it is a functional of the equilibrium probability distribution: 

 

1. Definition of an additional so called Mermin Functional. 

 

2. For the the equilibrium probability density the functional reduces to the grand potential 

of the system. 

 

3. Hohenberg-Kohn-Mermin variational principle 

 

Consider different probability distributions and compare thus defined Mermin functional with 

the equilibrium one by using the Gibbs inequality. The realization for the bound of the grand 

potential functional is a crucial first step to the variational principle of density functional theory. 

All above align together as the final statement of the variational principle relative to density 

distribution. 

 



4. Classical analog to Kohn-Sham equations 

 

Formally, the functional can be minimized through the variational principle. The result is 

technically reached via the corresponding Euler-Lagrange equation with the notable presence of 

the so-called direct correlation function. Given the chemical potential, the external potential and 

an expression for the variational Helmholtz energy functional F (contains all the information 

about the interparticle interaction) we can solve for the equilibrium density ρ from the Euler–

Lagrange equation. The equilibrium density can then be used to determine the grand potential 

and all thermodynamic properties of interest. 

 

5. The total Helmholtz free energy functional can be decomposed into an ideal and excess 

contribution 

 

Whereas the mathematical framework of DFT is formally exact, a precise expression of the 

Helmholtz energy as a functional of the molecular density profiles is unknown for most systems 

of practical interest. Formulation of the Helmholtz energy functional is a task essentially 

equivalent to enumeration of the statistical partition function for the particular system under 

investigation. A viable approach, practiced in classical thermodynamics for more than 100 years, 

is to divide the Helmholtz energy into an ideal part and an excess part. The ideal part represents 

the contribution of an ideal gas where all nonbonded interactions are turned off; the excess part 

accounts for interactions leading to the thermodynamic nonideality. 

The Helmholtz energy functional can be calculated either from the density distribution functions 

or from the direct correlation functions. These relations are formally exact and provide a useful 

starting point for developing statistical–mechanical theories of inhomogeneous fluids in terms of 

classical DFT. 



5.1 Ideal Functional 

For the ideal part, that is free of interactions, the Helmholtz energy functional is known exactly. 

 

5.2 Excess Functional: 

 

The functional derivatives of the excess functional are essential in solving the Euler-Lagrange 

equation. The functional derivatives are given as direct correlation functions. Direct correlation 

functions specify the response of the Helmholtz energy functional with respect to the density 

changes. Because there is no intermolecular correlations in an ideal-gas system, the direct 

correlation functions applies only to the nonideal part of the Helmholtz energy functional, i.e., 

the excess intrinsic Helmholtz energy. 

The first-order direct correlation function can also be interpreted as the distribution of the 

effective one-body potential due to the intermolecular interactions. The direct one-particle 

correlation function vanishes for the homogeneous ideal gas; for interacting fluids it defines the 

chemical excess potential, both for homogeneous and inhomogeneous systems. 

The second- and higher-order direct correlation functions are defined by consecutive functional 

derivatives of the first order direct correlation function. Because the first order direct correlation 

function is the functional derivative of the excess intrinsic Helmholtz energy with respect to the 

density distribution, the mth-order direct correlation function, corresponds to the mth-order 

functional derivative of the Helmholtz energy with respect to the density distribution. The 

density distribution and correlation functions provide a quantitative representation of the fluid 

structure and statistics. They also facilitate effective application of liquid-state theories including 

DFT to realistic systems. 

 

 



6. Construction of Free Energy Functionals – the Atomistic / Molecular View 

Classical Density functional theory provides an exact mathematical framework for predicting 

fluid structure and thermodynamic properties. However, it does not prescribe a generic procedure 

for formulation of the intrinsic Helmholtz energy as a functional of the molecular density 

profiles. Development of a density functional is a task essentially equivalent to solving the 

statistical mechanical problem for the particular system under consideration. The value of 

classical DFT is reflected in its efficiency for analyzing thermodynamic properties directly in 

terms of the molecular density profile, i.e. in the context of the microscopic structure. The 

straightforward way to derive exact expression for the excess free energy is based on density 

expansions of the functional. 

From an atomistic viewpoint, a generic Helmholtz energy functional must account for the 

contributions to the thermodynamic nonideality from each element of the intermolecular forces. 

In addition, it must reflect faithfully the microscopic architectures of the constituent molecules 

(i.e. molecular shape, chain connectivity, and conformation). The excess intrinsic Helmholtz 

energy is typically formulated on the basis of mathematical expansions in combination with 

insightful analysis of the physical phenomena under consideration. Each component of the 

intermolecular potential makes a distinct contribution to the excess intrinsic Helmholtz energy. 

The approximations introduced in developing these excess intrinsic Helmholtz energy 

functionals underlie different versions of classical DFT. Because excess intrinsic Helmholtz 

energy functionals arise from the nonbonded interactions between centers defined at atomic level 

(molecular structure), we make use of a variational ansatz that the excess Helmholtz energy can 

be expressed as a functional depending only on the atomic / molecular density details. Because 

the nonbonded interatomic forces are conventionally expressed in several terms e.g. short-range 



repulsion, attraction, long range electrostatic and so on, each component of the intermolecular 

potential makes a distinct contribution to the excess free energy. 

 

6.1. Short-range Repulsion. 
 

In statistical mechanics, the short range repulsion between two atomic particles (atoms or coarse 

grained elements of a polymer) is often represented by the hard-sphere model, which assumes 

that each particle has a physical volume prohibiting an overlap with other particles. This 

excluded-volume effect plays a central role in determining the structure and thermodynamic 

properties of condensed materials. It has been long recognized that, with an analytical theory for 

hard spheres, the thermodynamic nonideality arising from other components of the 

intermolecular forces can be included relative to this reference system. The structure and 

thermodynamic properties of a bulk hard sphere fluid can be accurately described by various 

analytical theories. Over the past two decades, numerous versions of classical DFT have been 

published for representing the structure and thermodynamic properties of inhomogeneous hard 

spheres (Evans). Among them - the fundamental measure theory (FMT), first proposed by 

Rosenfeld. Much work has been done to develop density functionals for the hard-sphere the 

standard in the field being the fundamental measure theory. Kierlik and Rosinberg (KR) 

formulated an alternative version of Rosenfeld's FMT. The hard-sphere functional can be used as 

a reference for representing the hard core interactions in a molecular system, and other 

interactions such as Lennard-Jones and Coulombic interactions can be added in the functional as 

a perturbation in order to model realistic molecular fluids, including water solutions and complex 

molecular environments. 

 

 



6.2 Attractive interactions 

 

In addition to short-range repulsion, the attractive component is another essential component of 

nonbonded interatomic interactions to be considered. Most versions of DFT take a mean-field 

approach to account for the contribution of van der Waals forces to the excess Helmholtz energy 

functional. A step towards an improvement is by a quadratic density expansion of the excess 

Helmholtz energy functional relative to that for a uniform fluid. 

This approach requires the excess chemical potential and the direct correlation function of a 

uniform atomic fluid as input. For that purpose, the analytical correlation functions derived from 

the first-order mean-spherical approximation (FMSA) are particularly useful. It has been 

demonstrated that, at least for relatively simple models such as Lennard–Jones systems and 

coarse-grained models of polymers, excellent agreement between theory and simulation results 

can be attained. Because the analytical expressions of both the excess chemical potentials and 

direct correlation functions are readily available from FMSA, the numerical implementation and 

computational cost of the quadratic approximation are very comparable to those for a mean-field 

approach. 

 

10.3 Weak Association – Hydrogen bonds 

Another important component in a conventional force field is the formation of hydrogen bonds 

as in associating fluids. For fluid-phase equilibrium calculations, the thermodynamic 

perturbation theory has been successfully used to develop the statistical associating fluid theory 

(SAFT). By incorporation of basic concepts from classical DFT, various extensions of SAFT 

have been applied. 

 



10.4 Correlations Attributed to Chain Connectivity 

 

In this approach, the Helmholtz energy functional includes an exact formalism for the ideal 

chains that retains the details of bond connectivity and an excess part accounting for the 

contributions from all nonbonded inter- and intramolecular interactions. The excess Helmholtz 

energy functional is expressed in terms of a weighted-density approximation for short range 

forces and a first-order perturbation theory for chain correlations. In the weighted-density 

method, we assume a priori the excess Helmholtz energy functional of an inhomogeneous system 

is identical to that of a uniform system, except the bulk density is replaced by a locally averaged 

or weighted density. As extensively used for simple fluids, the weighted-density approximation 

provides a simple yet effective way. 

In conclusion - any application of the density functional theory to a realistic physical problem 

requires an approximation to the free energy functional. The crux of the solution is the 

formulation of an effective free energy functional which in turn is guided by the specific 

intermolecular interactions in the considered system. Once the free energy functional is obtained, 

the equilibrium density field and the grand potential of the system can be determined.  

  



Sketch of current density functional theories implementations. 

 

1. Preliminary Notes about Atomic vs Polyatomic fluids. 

Below is a summary of the approaches followed for atomic and polyatomic fluids. 

 

1.1 Atomic type fluids 

 

Evans addresses several approaches for approximating the above excess free energy functional 

for atomic type fluids. One of the more popular methods chosen is based on weighted density 

approximations (WDA) because of its highly accurate scheme and ability to adapt to most 

systems. Actually WDA is the first successful nonperturbative approximation for the excess 

Helmholtz free energy and first-order direct correlation functions. Because of its versatility and 

accuracy, the weighted-density approximation is the main approximation method and has many 

vatiations. The development of weighted-density approximations originates as a modification of 

the local density approximation (LDA).  Weighted-density-functional (WDF) methods are 

modifications of the usual Local Density Approximation for inhomogeneous systems. The local 

density approximation (LDA) is the simplest scheme to build a density functional approximation. 

For slowly varying densities it is reasonable to assume that the macroscopic thermodynamical 

relations remain valid on a local scale. In the LDA, the free energy density at a point in a system 

with inhomogeneous single-particle density is given by the free energy per particle of a 

homogeneous system, evaluated at the value of the single-particle density at point. There is a 

systematic, although limited, way to improve the LDA in terms of density gradient expansions 

assuming that the generic functional is not just a locally dependent on density but also on its 

local gradient. LDA failures can be overcome by smearing out the density over a small spatial 

region, using a suitable weighting function. In the weighted-density method, we assume a priori 



the excess Helmholtz energy functional of an inhomogeneous system is identical to that of a 

uniform system, except the bulk density is replaced by a locally averaged or weighted density. 

 

 

 

1.2 Polyatomic fluids 

 

Unlike an atomic fluid, for a molecular system, intramolecular energetics (bonding constraints 

between the polymer segments constituting a chain) govern behavior. In classical DFT the most 

common molecular model for a polyatomic molecule is a chain of spherical segments which are 

tangentially bonded to each other. The preliminary step in developing the free energy for such a 

fluid is to split the free energy into an ideal and an excess part. The existing density functional 

methods for polyatomic systems differ in whether the intramolecular interactions are accounted 

for in the ideal functional contribution, the excess contribution or a combination of both. Further, 

a polyatomic DFT can be formulated in terms of molecular density or segment density, and can 

require additional input from other theories or simulations. Each therefore has its own 

advantages and disadvantages in regard to accuracy and computational expense. Some of the 

more popular and well established density functional theories, and how they differ in regard to 

their formulations and approximations As in the case for atomic fluids, weighted-density 

approximations are popular methods for estimating the free energy functionals in polyatomic 

fluids. The application of these approximations follows much the same procedure as in the case 

for atomic fluids. 

  



2.Classification according to the treatment of the free energy density functional 

 
The wide diversity of different versions of classical DFT reflects not only the variety and 

complexity of natural phenomena induced by rich molecular architecture and nonbonded 

interactions, but also the generality of the basic idea of DFT and its applicability to a broad range 

of problems. For practical applications, the selection of a particular version of DFT is influenced 

by several factors, including not only by its numerical performance in terms of both accuracy and 

computing efficiency, but also by the underlying physical models, by the problems of interest 

and, very often, by personal taste. The approximate expressions for the excess Helmholtz energy 

functional discussed here allow us to address quantitatively most nonbonded interactions in a 

complex fluid. However, significant efforts are still required for the development of more 

accurate density functionals accounting for more realistic intermolecular forces. Although the 

mathematical framework of DFT is exact, its successful application critically depends on 

judicious choice of an appropriate Helmholtz energy functional suitable for the system under 

investigation. 

Popular applications of DFT follow one of the following routes: 

 

2.1 Chandler, McCoy and Singer for macromolecules 

Classical density functional theory was first applied to polymeric systems by Chandler, McCoy, 

and Singer (CMS-DFT) within the framework of interaction site model. Molecules are modeled as 

chains of freely jointed spheres which interact with spherically symmetric site-site potentials. 

These interacting sites coincide with the centers of their respective segments. The free energy for 

such a system can be expressed as a functional of the site densities. A variational principle still 

exists which states that the free energy has a global minimum for the equilibrium site densities. 

This free energy functional has two contributions, an ideal part and a non-ideal / excess part. It is 

based on a functional expansion truncated at second order. This implementation is based on the 



direct correlation function (DCF) for a bulk fluid at the bulk density of interest. The roots of the 

method are nourished by segment density functionals. In the CMS-DFT, all intramolecular 

interactions are accounted for in the ideal functional, while all intermolecular interactions are 

included in the excess contributions (site-site correlation function of the corresponding uniform 

fluid). As a result, their ideal functional is very accurate and is exact for an ideal chain system. 

The intramolecular correlation functions come at the expense of a single-chain simulation. 

 

2.2 Density functionals based on thermodynamic perturbation theories TPT 

 

Wertheim's thermodynamic perturbation theory holds a great value and has been utilized for a 

wide range of applications and systems. Kierlik and Rosinberg became the first to introduce a 

density functional theory based on Wertheim's theory. 

These theories include molecular level details to make predictions on how molecular structure 

affects self – assembly of associating species. For this, one needs a theory whose starting point is 

the interaction potential between two associating species which includes this molecular level 

detail. Development of accurate molecular theories for associating fluids is hampered by the 

strength and directionality of the association interaction. This problem was largely solved by 

Wertheim in the 1980’s. Wertheim’s cluster theory incorporates the geometry of the association 

interaction at an early point in the derivation. This allowed Wertheim to develop the theory in 

such a way that accurate and simple approximation methods could be applied such as 

thermodynamic perturbation theory. The TPT is based on the calculation of the excess Helmholtz 

free energy over a reference, the properties of which are assumed to be known (or obtainable) 

with reasonable accuracy. It means that the TPT assumes first the separation of the total 

intermolecular potential into a reference part and a perturbation. There are thus two possible 

sources of errors in calculations of the thermodynamic properties from the TPT: 1. An inaccurate 



description of the reference system and 2. Neglect of the higher order contributions in the 

expansion. 

In comparison with alternative methods, TPT has a great virtue in the decoupling of the 

nonbonded intermolecular interactions and polymer-chain connectivity. The former defines all 

short-range correlations that can be effectively treated by various density-functional methods 

developed for monatomic systems. With a reliable model for the excess Helmholtz energy, TPT 

provides a satisfactory description of the structure and thermodynamic properties for a wide 

variety of polymeric systems. 

Wertheim’s TPT1 is used to calculate excess free energy by forcing a mixture of spherical 

segments to bond in a specified order to form the polymer or solvent molecules of interest. The 

change in free energy due to association is obtained as a perturbation to a hard sphere reference 

fluid. By letting the association energy become infinitely large, complex polyatomic molecules 

can be constructed allowing the development of polymer density functional theories, in the 

framework of  thermodynamic perturbation theory. Thus, the chain contribution to the free 

energy functional is obtained by finding appropriate association free energy functional. The 

equilibrium density distribution of segments can be determined by minimizing the grand free 

energy, yielding a corresponding set of Euler-Lagrange (EL) equations. 

In 1997, Segura, Chapman, and Shukla introduced a density functional theory for describing 

atomic associating fluids. The work of Segura et al. is based on Wertheim's perturbation theory. 

From TPT1, the free energy functional for such a system of associating hard spheres can be 

written as a perturbation to the reference hard sphere fluid. The weighted density approximation 

for hard-spheres is employed, and intermolecular association effects can be included through a 

Wertheim's associating fluid functional. 



Molecular Self-Assembly via classical DFT 
 

Amphiphilic molecules (such as surfactants) may self-organize into a variety of intriguing 

ordered structures in a solution. The self-assembly processes have been of prime scientific 

interest for decades. Applications include formation of vesicles or liposomes as carriers of 

therapeutic agents and as simplified models for biological membranes. The basic idea is that the 

organized microscopic structures satisfy a local minimum of the grand potential energy, which 

can be described in terms of the density-functional formulism. Based on coarse-grained models 

of amphiphilic molecules, DFT is able to represent not only the conditions required for vesicle 

formation but also the microscopic structures of vesicles, and bilayer membranes made of either 

one-component or multicomponent amphiphiles. 

 

Future 

Future applications of DFT depend on continuing progress toward more faithful representation of 

density functionals reflecting molecular-level interactions and, corresponding numerical 

implementation methods. 


